Table 2 (cont.)					Table 2 (cont.)				
hkl	d(hkl)	$10^4 \sin^2 \theta_o$	$10^4 \sin^2 \theta_c$	Io	hkl	d(hkl)	$10^4 \sin^2 \theta_o$	$10^4 \sin^2 \theta_c$	Io
$\left. \begin{array}{c} 310\\221 \end{array} \right\}$	2 ·716	804	802	59	600 414	1.635 1.603	2218 2309	2216 2303	15
302	2.705	810	808	100	315	1.577	2384	2377	19
222	2.442	994	991	31	520	1.570	2404	2401	5
213	2.432	1002	999	33	NTerrore		.1 .1	1	- *
004	2.421	1011	1009	31	Nume	erous additionation	al observed line	es less than 1.5	7 A .
312	2.370	1056	1053	4					
104	2.350	1074	1071	24	The de	nsitv was me	easured by th	e double pyc	nometer
320	2.235	1188	1170	2	method of	f Collett (195	4) using carbo	on tetrachlori	101110101 10
114	2.225	1198	1194	5	No furt	ther structure	l work on this	substance is	aontom
321	2.189	1238	1233	9	nlated	iner structura	i work on this	substance is	comem-
204	2.172	1257	1256	4	plateu.				
410	2.140	1295	1293	6			References		
223	2.128	1310	1307	13	_				
313	2.080	1371	1368	10	Collett,	C. T. (1954).	J. Res. NBS, :	52 , 4, 201.	
322	2.040	1425	1422	10	Murthy,	M. K. & Agu	JAYO, J. (1964)	. J. Amer. Cer	am. Soc.
304	1.945	1568	1563	4	47. 444.		, , ,		
323	1.846	1741	1737	5	NOWOTNY	. H. & WITTN	14NN A (1954	1) Mh Chem	85 558
421 502	1.818	1794	1787 1791	9	SCHWARZ	, R. & HEINR	асн, F. (1932)	. Z. Anorg. u.	Allgem.
314	1.809	1813	1810	5	Chem. 1	205, 45.	50) b 4		
413	1.784	1864	1861	5	IRESVYAT	S'KII, S. G. (19	58). Dopovidi /	4kad. Nauk Ul	kr. RSR,
510	1.759	1916	1908	12	3, 295.				
404	1.723	1998	1994	5	Shaw, A.	A., CORWIN	, A. A. & Ed	WARDS, A. A.	(1958).
215	1.716	2008	2013	26	J. Amer	r. Chem. Soc.	80, 1536.	·	. ,

Acta Cryst. (1968). B24, 461

Crystallography of zinc selenite dihydrate. By WILLIAM G.R. DE CAMARGO and DARCY P.SVISERO, Department of Mineralogy, University of São Paulo, Caixa Postal 8105, São Paulo, Brazil

(Received 27 November 1967)

ZnSeO₃. 2H₂O has 2/m symmetry and grows as small and well developed colorless crystals $(0\cdot 1 - 5 \text{ mm})$ of pseudo-rhomboedral habit. The main observed interfacial angles are: $(110) \land (102) = 63^{\circ} 50'$ and $(110) \land (1\overline{10}) = 80^{\circ} 10'$, and the observed optical constants $X = \alpha = 1 \cdot 660$, $Y = \beta = 1 \cdot 710$, $Z = \gamma = 1 \cdot 750$; $(\gamma - \alpha) = 0 \cdot 090$ and $2V_{calc} = 82^{\circ}$. The unit cell parameters determined in the precession photographs and refined by the powder method are $a_0 = 7 \cdot 68$, $b_0 = 8 \cdot 80$, $c_0 = 6 \cdot 49$ Å, $\beta = 81^{\circ} 34'$ and $a_0: b_0: c_0 = 0 \cdot 87: 1:0 \cdot 74$. Space group $P2_1/n$. The observed specific gravity $3 \cdot 52$ g.cm⁻³ suggests 4 formulae per unit cell.

Selenites of several metals, such as Ni, Co, Mn, Cu and Zn, have been recently prepared by the Chemistry Department of the University of São Paulo, Brazil, and later investigated from the crystallographic point of view by various authors.

 $ZnSeO_3.2H_2O$ precipitates as monoclinic crystals, with 2/m symmetry, the individuals being approximately equidimensional and of size of the order of a millimetre, resembling a pseudo-rhombohedral habit. Some fibrous radiated aggregates may however be formed occasionally. Most of the crystals are colourless, although a few may exhibit a white colour.

The crystal morphology is very simple, showing only the two crystallographic forms $\{110\}$ and $\{102\}$, as determined by the following interfacial angles measured in the two-circle goniometer:

(110)	∧(102):	$= 63^{\circ} 50'$
(110)	\wedge (1T0):	= 80° 10′

The axial ratio $a_0:b_0:c_0=0.87:1:0.74$, has been calculated from the unit-cell dimensions obtained by X-ray diffraction. The compound is biaxial (-), $2V=82^\circ$, and has the following indices of refraction:

$X = \alpha =$	1.660 ± 0.005
$Y = \beta =$	1.710 ± 0.005
$Z = \gamma =$	1.750 ± 0.005

The unit cell has been determined by precession methods with Mo $K\alpha$, by using photographs of the reciprocal level *hol* and *0kl*. The parameters have been refined by the powder method with Cu $K\alpha$, for greater accuracy, giving

= 7.68,
$$b_0 = 8.80$$
, $c_0 = 6.49$ Å,
 $\beta = 81^{\circ}34'$.

The main reflexions of the powder diagram are listed in Table 1.

an

	Γa	ιb	le	1.	Interp	olanar	spacings	for	ZnSeO	3.2H2O
--	----	----	----	----	--------	--------	----------	-----	-------	--------

hkl	d_{calc}	$d_{\rm obs}$	Irel
110	5·744 Å	5·754 Å	10
10T	5.314	5.322	2
11 T, 101	4.545	4.540	2
020	4.402	4.393	2
111	4.061	4.047	5
200, 120	3.795	3.795	5
210	3.485	3.480	6
21T	3.256	3.253	2

Table 1 (cont.)					
hkl	d_{calc}	$d_{ m obs}$	I_{rel}		
121	3.173	3.167	2		
012	3.019	3.015	6		
112	2.950	2.953	2		
130	2.737	2.732	5		
031	2.670	2.666	3		
122	2.552	2.556	2		
221	2.520	2.516	2		
311	2.390	2.390	4		
230	2.322	2.321	1		
202	2.291	2.287	1		
23T, 301	2.243	2.247	2		
040	2.201	2.199	2		
032	2 ·167	2 ·168	2		
013, 041	2.082	2.083	1		
222, 14 1	2.032	2.034	1		
141	1.984	1.985	1		
322	1.932	1.933	1		
400, 33T	1.898	1.897	1		
303	1.770	1.772	1		
420	1.743	1.741	2		
150	1.715	1.715	1		
241	1.695	1.694	1		

In the reciprocal level h0l the absences are for h+l= odd, in the 0kl level for 00l, l = odd, and for 0k0, k = odd, indicating the space group $P2_1/n$. The observed specific gravity of 3.52 g.cm⁻³, gives 4 formulae per unit cell.

The data of the compound as compared in Table 2 with the data of other selenites published in previous papers by Camargo and others show that the following substances are isostructural: $ZnSeO_3.2H_2O$, $CoSeO_3.2H_2O$ and $NiSeO_3.2H_2O$ (see Palache, 1937; Berman, Frondel & Palache, 1951; Goñi & Guillemin, 1953; Sindeeva, 1964; Camargo, Giesbrecht & Leite, 1964; Camargo, 1965; Camargo & Leite, 1966; Camargo & Svisero, 1967).

Table 2. Crystallographic data of selenites of Zn, Co and Ni

Selenites of	Zn ²⁺	Co ²⁺	Ni ²⁺
Ionic radius (Å)	0.74	0.72	0.69
a_0 (Å)	7.68	7.58	7.55
b_0 (Å)	8.80	8.73	8.75
c_0 (Å)	6.49	6.59	6.43
β	81°34′	81°30′	81°
Space group	$P2_1/n$	$P2_1/n$	$P2_1/n$
Unit cell volume (Å ³)	434	431	420
Z	4	4	4

The authors express their gratitude to Professor Ernesto Giesbrecht of the Chemistry Department of the University of São Paulo, who was responsible for the synthesis of the material kindly offered for crystallographic study.

References

- BERMAN, H., FRONDEL, C. & PALACHE, C. (1951). The System of Mineralogy, Vol. II. New York: John Wiley.
- CAMARGO, W. G. R. (1965). Amer. Min. 50, 296.
- CAMARGO, W. G. R., GIESBRECHT, A. M. & LEITE, C. R. (1964). Ciência e Cultura, 16, 104.
- CAMARGO, W. G. R. & LEITE, C. R. (1966). An. Acad. Bras. Cienc. 38, 273.
- CAMARGO, W. G. R. & SVISERO, D. P. (1967). Ciência e Cultura, 19, 252.
- GOÑI, J. & GUILLEMIN, C. (1953). Bull. Soc. franç. Minér. Crist. 76, 442.
- PALACHE, C. (1937). Amer. Min. 22, 790.
- SINDEEVA, N. D. (1964). Mineralogy and Types of Deposits of Selenium and Tellurium. New York: John Wiley.

Acta Cryst. (1968). B24, 462

A note on the structure of YCd2.* By ROBERT ELMENDORF and EARLE RYBA, Department of Materials Science, The Pennsylvania State University, University Park, Pennsylvania, U.S.A.

(Received 9 October 1967)

Crystal structure data, including the results of a least-squares refinement based on single-crystal intensities, for YCd_2 (CdI₂ type structure) are presented.

Bruzzone & Ruggiero (1962) reported that the compound YCd_2 exhibits the CdI_2 (C6) type structure, space group $P\overline{3}m1$, with a=4.879, c=3.500 Å. Y and Cd atoms are located in equipoints 1(a) and 2(d) with z = 0.470. However, since no details or supporting data for this work were given, we made an independent determination of the lattice and positional parameters following the procedure outlined by Michel & Ryba (1965). The alloy sample was a portion of the thermal analysis sample used in the determination of the Y-Cd phase diagram (Ryba, Kejriwal & Elmendorf, 1967). The single crystals used in the determination were coated with an acrylic plastic to retard the very rapid oxidation. The intensities of 57 hkl (h=0,1,2) reflections from a roughly cylindrical single crystal 0.03 mm in diameter \times 0.29 mm in length were measured by planimetering the recorded peaks. No absorption correction was applied. The results are as follows:

$$a = 4.882 \pm 1, c = 3.501 \pm 3 \text{ Å}$$

(Cu K\$\alpha\$1 radiation; \$\lambda\$ = 1.54051 Å)
Y: 1(a)000; B = 1.00 \pm 16 Å²
Cd: 2(d)\frac{1}{3}z; z = 0.4783 \pm 14
B = 1.06 \pm 8 Å²
R = 9.0 \%.

The structure factors and interatomic distances are given in Tables 1 and 2, respectively.

^{*} This investigation was supported by the Army Research Office (Durham) under Contract DA-31-124-ARO(D)-129.